If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2+30m-35=0
a = 5; b = 30; c = -35;
Δ = b2-4ac
Δ = 302-4·5·(-35)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-40}{2*5}=\frac{-70}{10} =-7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+40}{2*5}=\frac{10}{10} =1 $
| 4x-101=107-12x | | -44x(x+1=0) | | 2u²-5u+3=(u-3)² | | 6x-(3x+7)=4x-32 | | 150=e | | 75-16x^2=0 | | -50-2x=52+x | | 6b-7=11 | | b+2.7=10 | | 8x+84=-1 | | 3+3(2w-2)=-3(5w-2)+3 | | 2x-78=-7x+66 | | 5b-14=-5+8b | | (2x+2)=26 | | -19-14x=37-2x | | H=-16^2+160t+16 | | 1/2(x-6)=22 | | 2y2*y=-3 | | (5x-85)=90 | | (4x+5)(4x–5)=0 | | 0=1-1/4-1/16x | | -2(5y-2)+4y=4(y+4) | | -158-6x=128+5x | | 4m2+28m=-49 | | 78-0.4x=82 | | 5h+h^2=84 | | 3(w-4)-6=-4(-5w+4)-3w | | 5h+5^2=84 | | V=3.14r*2(10) | | -0.5(8x+3.38)=-4x+15.77 | | 4(x-2)=9(x+2) | | -5x-150=66-14x |